
GPU Encrypt – First Progress Report
James Gleeson, Sreekumar Rajan, Vandana Saini
October 23rd

Achievements:

Determine the status of OpenCL access to the Adreno 320 GPU on the Nexus 4 Android platform.

As later sections in our report will reveal, our attempts at running an OpenCL AES implementation and
other trivial user-level OpenCL programs on the Adreno 320 GPU of the Nexus 4 phone running an
Android 4.2.2 version proved unstable when activating the display of the device in the middle of their
execution.

To quickly rule out that this unexpected behaviour was due to us running an outdated Android version,
we decided to rerun the tests on the latest 4.3 Android release for the Nexus 4 phone. Our attempts to run
the OpenCL AES algorithm resulted in a segmentation fault showing that the OpenCL shared library was
missing from its usual location: /system/lib/libOpenCL.so. Investigating the proprietary blobs
provided by Google [5] reveal that it has been removed as of 4.3. Indeed, OpenCL will no longer be
accessible by developers starting with Android 4.3, and the new standard for accessing general-purpose
GPU programming (GPGPU) capabilities is through RenderScript [8]. Hence, the subsequent sections of
our report investigate OpenCL stability on the Android 4.2.2 platform.

Find an existing user-level AES encryption implementation that makes use of OpenCL

We obtained an existing OpenCL implementation of the AES encryption algorithm from a combination of
sources. In particular, we first obtained a starter application illustrating the usage of OpenCL on the
Android platform, which integrates with the Native Development Kit (NDK) build tools for compiling
native C/C++ compatible with the ARM-based CPU of the Nexus 4 phone [1, 5]. We confirmed the
correct usage of the OpenCL API in this starter program by cross-referencing the order of calls for
allocating and deallocating OpenCL resources (e.g. kernel context, sending OpenCL kernel parameters,
reading OpenCL memory buffers to obtain output etc.) from a tutorial on OpenCL programming [3].
Next, we obtained an existing implementation of the AES algorithm in OpenCL from a separate Github
repository [4]. Since OpenCL is a general-purpose programming framework, code that makes use of it
does not require device specific knowledge of the available GPU or CPU [7]. Hence, no modifications
were needed to the kernel implementation of the AES algorithm.

The OpenCL AES test program (opencl_aes) operates by allocating a fixed size array (128 bytes) of
zeroed data, and makes use of a fixed 128-bit key to encrypt the zeroed data. This data is then transferred
to the GPU device memory via the OpenCL clEnqueueWriteBuffer command and the AES kernel is
executed using clEnqueueNDRangeKernel [7].

1

When the AES kernel finishes, the clWaitForEvents command returns and the output is read from the
GPU device via clEnqueueReadBuffer [7]. The correct operation of this program is asserted by
checking the value returned when reading back encrypted data from the GPU, and ensuring that the result
is consistent across runs.

Our first experiment investigated the stability of the OpenCL library when no interaction was being
performed with the device. In particular, we ran the opencl_aes program 100 consecutive times, and
investigated the encrypted data. Table 1 indicates the input data (zeroed data) and the observed encrypted
data for all 100 consecutive runs:

Input Observed Output
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91
6A 50 AE 0C 58 8A 89 61 40 A6 70 83 43 E8 F7 91

Table 1: 100 consecutive runs of opencl_aes without interaction on the phone.

Thus, the output was consistent across all 100 consecutive, indicating that the OpenCL library behaves
correctly when there is no contention by other processes to make use of the GPU (e.g. OpenGL or other
OpenCL programs).

Next, we wished to test whether the OpenCL library (and underlying driver) implements coordination
between other processes that try to use of the GPU concurrently. In particular, we conduct the 100
consecutive run experiment again, but this time we test for interference with Android processes that use
OpenGL for hardware acceleration by activating the display of the device in the middle of the execution.

Input Observed Output
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 2: All subsequent consecutive runs of opencl_aes after the display becomes active.

As indicated by Table 2, on the 63rd and all subsequent runs of the opencl_aes program (coinciding
with activation of the display), the output read from the GPU device memory is all zero data. It was
observed that the phone becomes unresponsive in this state (to touch or button presses).

2

To further evaluate the effects of this misbehaviour, snapshots of process activity were collected before
and after the failed execution using the top command.

Process Name

android.process.media
com.android.launcher

com.android.location.fused
com.android.mms

com.android.musicfx
com.android.nfc

com.android.nfc:handover
com.android.phasebeam
com.android.phone

com.android.providers.calendar
com.android.systemui
com.android.vending

com.google.android.apps.maps:LocationFriendService
com.google.android.apps.walletnfcrel

com.google.android.calendar
com.google.android.deskclock

com.google.android.gm
com.google.android.googlequicksearchbox

com.google.android.gsf.login
com.google.android.inputmethod.latin

com.google.android.music:main
com.google.android.onetimeinitializer

com.google.android.partnersetup
com.google.android.talk

com.google.android.youtube
com.google.process.gapps

com.google.process.location
eu.chainfire.supersu

flush-0:17
kworker/u:0
kworker/u:1
kworker/u:3

Table 3: Processes that have terminated post-failure when activating the display during opencl_aes

As observed above, most of the processes that have stopped responding are Android user applications (as
indicated by the com.google.* and com.android.* prefixes in their name) [9]. This result indicates
that the OpenCL library is not coordinating access to the GPU, and since Android applications are
crashing (which typically make use of the GPU for hardware acceleration), OpenGL tasks are probably
not being coordinated across processes with by the OpenCL driver.

3

To rule out missing use of coordination API calls, we investigated the OpenCL Programming Guide [7].
Two methods exist for synchronizing GPU access across OpenCL and OpenGL. In implicit
synchronization, any OpenGL command that accesses the contents of an OpenGL memory object listed in
the argument list of clEnqueueAcquireGLObjects() and were issued prior to the call to
clEnqueueAcquireGLObjects() will complete before execution of any OpenCL commands
following the clEnqueueAcquireGLObjects(). In explicit synchronization, an OpenCL event is
created from an OpenGL fence sync object via the function clCreateEventFromGLSyncKHR(). The
OpenGL thread calls glFenceSync() to ensure any OpenCL commands have executed prior to
executing its OpenGL commands, and the OpenCL thread calls clEnqueueAcquireGLObjects() (on
the fence sync object event) to ensure OpenGL commands prior to the call have finished. Hence, the
explicit synchronization is useful when an OpenGL thread separate from the OpenCL thread is accessing
the same underlying memory object.

Unfortunately, a major limitation of both the implicit and explicit synchronization is that they assume
OpenGL and OpenCL commands occur in the same process with a shared memory region for storing
shared memory objects, whereas we are interested in mutual exclusion of the GPU across different
processes that do not share memory (Android processes in Table 3 and our opencl_aes test program).
Hence, we were unable to use this approach.

We also investigated OpenCL functions that would give us information about the availability of a GPU
before using it. clGetDeviceInfo() returns information about an OpenCL device [7]. The enumeration
constant CL_DEVICE_AVAILABLE can be passed as the second argument and the function will return
CL_TRUE to indicate the availability of a device or CL_FALSE otherwise. However, during our
experimental runs, we found it was never the case that CL_FALSE was returned and instead the OpenCL
runtime system always indicated availability of a device. We also performed exhaustive error checking
for all OpenCL commands (i.e. ensuring all calls return with CL_SUCCESS) to the OpenCL
implementation of AES encryption algorithm. However, CL_SUCCESS was always returned, even in
cases when the test program would fail.

Create user-level programs for interacting with the Adreno 320 GPU through OpenCL to
determine if it is stable.

To further rule out the possibility that the observed behaviour could be due to improper usage of the
OpenCL library (e.g. unchecked error conditions, missing use of coordination API calls) or bugs in the
provided AES code, a minimal OpenCL program named helloworld was constructed that writes 1KB of
'1' characters and uses one GPU to increment them to '2' characters.

On running this program with the display off, everything works as expected: 1KB of '1's are read into
GPU device memory and 1KB of '2's are read out of GPU device memory after completion of the trivial
OpenCL kernel.

4

However, if the display of the phone is activated simultaneously with the OpenCL program, the same
behaviour as was described for the opencl_aes program is observed in the helloworld program. In
particular, the output read from the GPU device memory is 1KB of zeroed data.

The further investigate what level of coordination is implemented by the GPU, we investigated running
the helloworld program with up to 1000 concurrently executing instances, without activating the
display. Thus, here we are testing whether the OpenCL library is implementing coordination amongst
concurrently executing OpenCL kernels (but not any interaction with OpenGL).

Input/Output Buffer Value

Input
Output
Output
Input
Output

1111111111...
2222222222...
2222222222...
1111111111...
2222222222...

Table 4: Snapshot of concurrently executing and coordinated OpenCL (helloworld) programs

As indicated in table 4, the interleaved printing of input and output buffers of the concurrently executing
helloworld processes without any output arrays resulting in zeroed data is evidence that the OpenCL
library is providing coordination amongst the execution of OpenCL kernels belonging to separate
processes (in contrast to OpenCL and OpenGL).

Consult experts in the field about past experience with GPGPU programming.
With limited success in coordinating GPU access on the Nexus 4 phone, we resorted to consulting two
technical experts in the field of GPGPU programming. The first expert is a PhD student named Sahil
Suneja who has had experience in OpenCL programming on desktop platforms with discrete graphics
cards as well as laptops with integrated graphics chips. Sahil indicated that he runs a typical GUI
environment that makes use of the GPU concurrently with OpenCL programs, and has indicated no
previous experience similar to the problems we are experiencing.

We had an opportunity to speak with a technical representative from QualComm on campus (reachable at
farid2@qti.qualcomm.com) , who happened to be a driver developer, about the status of coordinated
access to the GPU. QualComm manufactures the SnapDragon chipset found in the Nexus 4 phone, and is
responsible for distributing the proprietary OpenCL drivers to Android platforms. We indicated the
instability issues we were facing with the coordination of OpenCL and OpenGL accessing the GPU. He
suggested implementing solutions involving shared memory across the processes using a shared frame
buffer. This would however require coordination of GPU access via a single “master” process (requiring
instrumentation of all existing Android processes that make use of OpenGL to instead communicate with
the “master” process). The representative further confirmed that there is no coordination amongst
OpenGL and OpenCL as implemented in the OpenCL driver, which would explain our experimental
observations.

5

mailto:farid2@qti.qualcomm.com

Achievements for the next milestone (November 13th):

Expert comments and our in-depth study indicate that we must further investigate the mechanisms by
which GPU coordination (amongst OpenCL and OpenGL) is implemented in mature desktop machines
where our observed unexpected behaviour is absent. Once we have determined how such activity is
coordinated, we intend to investigate the practicality of implementing this behaviour on the Android
platform. The technical barriers to accomplishing this are that the OpenCL drivers are proprietary
(provided by QualComm), so if the coordination must be implemented there, we will most likely be
unable to proceed.

Benchmark the performance of both algorithms on the Nexus 4 for battery consumption (amplitude
during execution) and throughput (rate of encryption).
Due to unexpected difficulties in assessing the stability of the OpenCL library on the Android platform,
this task has been postponed until future milestones. Indeed, the future milestones are also subject to
change as this project progresses.

References:

[1] aopencl, Android OpenCL examples, http://code.google.com/p/aopencl/
[2] Android Developers, Android NDK, http://developer.android.com/tools/sdk/ndk/index.html
[3] CodePlex, OpenCL, http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201
[4] Github, OpenCL-AES, https://github.com/softboysxp/OpenCL-AES
[5] Google Developers, Binaries for Nexus Devices –

https://developers.google.com/android/nexus/drivers#makojwr66y
[6] Google Inc., Nexus 4, http://www.google.com/nexus/4/.
[7] Munshi, Aaftab, et al. OpenCL programming guide. Pearson Education, 2012.
[8] OpenCL Blog, OpenCL Disabled on Android –

http://www.openclblog.com/2013/08/opencl-disabled-on-android.html?m=1
[9] Yaghmour, Karim. Embedded Android: Porting, Extending, and Customizing. O'Reilly, 2013.

6

https://developers.google.com/android/nexus/drivers#makojwr66y
http://developer.android.com/tools/sdk/ndk/index.html
http://www.openclblog.com/2013/08/opencl-disabled-on-android.html?m=1
http://www.google.com/nexus/4/
https://github.com/softboysxp/OpenCL-AES
http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201
http://code.google.com/p/aopencl/

	GPU Encrypt – First Progress Report
	Achievements:
	Achievements for the next milestone (November 13th):
	References:

