
GPU Encrypt: AES Encryption on Mobile Devices

James Gleeson, Sreekumar Rajan, Vandana Saini

Department of Computer Science

University of Toronto

Toronto, ON

{james.gleeson,sreekumar.rajan,vsaini}@cs.toronto.edu

I. INTRODUCTION

Cell phones have evolved into a ubiquitous and essential
method of communication across the world. Smartphones and
mobile devices have significantly increased the productivity of
users through accessibility to important services and have thus
become critically integrated into both their work and personal
lives [1]. A side effect of this integration is that phones contain
a large volume of probative information linked to an individual.
The scope of information sensitivity ranges anywhere from low
severity (call history, contact information, and text message
data) to more valuable information (e-mail, browser history,
chat logs, and even passwords) [2]. The ever increasing number
of phones available and in use by the public will continue to
enhance the convenience of day-to-day life, but simultaneously
brings along an increased potential for criminals to misuse this
technology.

Traditional desktops are assumed physically secure and
need only be protected against software attack vectors (e.g.
a firewall for guarding against malicious network attacks), but
mobile devices are vulnerable to physical tampering, leading to
a variety of previously unconsidered data risks [1]. Most of the
sensitive and private information hoarded on cell phones can
be legally or illegally breached by someone with the technical
expertise and the required equipment. However, the tools
needed to perform these attacks are often publicly available
in the form of source development tools [3]. Currently, mobile
phone systems try to offer security and privacy to users through
user authentication, signal encryption, and user anonymity.
Nevertheless, these techniques cannot completely guarantee
user privacy in domains such mobile commerce, particularly
when they are in conflict with resources present on the device
(e.g. power, cycles, memory, and bandwidth) [1]. A single
event of device theft could lead to financial and information
loss, a privacy breach, loss of intellectual property, or even
more severe damage. Information security is thus becoming
increasingly important, given the ever increasing number of
new applications that make use of that data.

Existing disk encryption mechanisms typically deployed
in laptops have been shown to be vulnerable to methods
that instead focus on obtaining sensitive data directly from
memory. One such method is a cold boot attack [4], whereby
an attacker gains physical access to a computer and is able
to obtain sensitive data either in plain text or indirectly by
first obtaining encryption keys from the memory of a running
operating system. In particular, if the computer is forcefully
powered off during operation (e.g. unplugging the power cord),
the operating system will not have a chance to scrub memory
of sensitive information. Subsequently, the DRAM chips will

retain the data in a readable form for a period of time even
after the computer is completely shut down. This period can
even be increased by lowering the temperature (temperatures
as low as −50 ◦C achieved using off-the-shelf air dusters have
been shown to preserve up to 99.9% of memory for up to 1
minute [4]). The contents are then read on the same or separate
machine by booting the machine with the compromised RAM
into a custom kernel that dumps the contents into a separate
storage medium. This process thereby grants unauthorized
access of a computer’s encryption keys when the computer
is left physically unattended. Therefore, the disk encryption
systems have virtually no safe place to store the cryptographic
keys. An attacker can recover encryption keys using key
harvesting algorithms even in the presence of 15% bit decay
for 128-bit AES keys [4].

Operating systems are still in the early stages of offering
a completely secure environment to protect against breaches
to secure information in the absence of physical security, as
is typical for phones. With attacks like cold boot making
foreign memory access easily achievable, some safeguards for
storing the encryption keys have been explored. TRESOR [5]
is a Linux kernel patch for the x86 architecture that runs
the AES algorithm entirely on the microprocessor, storing the
secret key in CPU debug registers as a step to protect against
key harvesting. This provides the advantage of preserving
binary compatibility, preventing user-space applications from
accessing them (by patching system calls), and being large
enough to store cryptographic keys. This serves as good mo-
tivation for the refinement of memory encryption techniques,
and motivates the work herein.

In this technical report, we propose the use of GPUs
as a hardware accelerator for implementing the Advanced
Encryption Standard (AES) algorithm over a traditional CPU
based implementation. Modern GPUs are attractive for parallel
processing because these architectures have hundreds of pro-
cessing cores and high bandwidth, delivering up to a teraflop
(1 trillion calculations per second) of computing power from
the same silicon area as a comparable microprocessor and
using only a fraction of the power per calculation [6]. These
high-performance and low-energy advantages are a result of
the GPU’s support for hiding latency in memory transac-
tions through massive multi-threading with low context switch
overhead [7]. Modern mobile devices have a system-on-chip
(SoC) architecture where the CPU, GPU, and other computing
nodes share the same system bus for accessing main memory.
Furthermore, there is active work in providing frameworks for
performing general-purpose parallel programming on GPUs
(GPGPU). One such framework is OpenCL, whereby a host
processor (in this case, a CPU) can delegate work to be

Host / CPU

Device / GPU
Kernel

.........
...

Compute unit
Work group

Processing element
Work item

Fig. 1. The OpenCL platform and execution model

performed in parallel by computing nodes (GPUs). We chose
the OpenCL framework for implementing the AES algorithm
due to its availability on Android phones.

AES is a variant of the Rijndael cipher which acts on input
blocks of 128 bits and uses keys of size 128, 192 or 256 bits.
The algorithm can work in parallel on each individual block
of the input plain text (each block being 128 bits). At a high
level, the algorithm does the following. It first goes through
a key expansion stage, where the cipher key is used to derive
the round keys using a key scheduling algorithm. The plain
text is XORed with one of the derived keys (AddRoundKey)
before being subjected to a series of rounds, the number of
rounds being decided by the size of the cipher key (10 in
case of 128-bit keys). The input and output of each of the
rounds is modeled as 4 by 4 matrix, called a state, with each
cell being a byte in size. In each of the rounds the input
goes through the following steps. First, each byte is replaced
in a non-linear manner with another using a lookup table
known as the T-box (SubBytes). Then each of the rows of
the input is cyclically shifted to the left a certain number of
steps (ShiftRows). This is followed by a mixing operation
which operates on the columns of the state, combining the
four bytes in each column (MixColumns). The last round of
the encryption algorithm omits this step. The final step in the
round is again AddRoundKey where the state is XORed with
a derived key from the key expansion step. The output of these
rounds is the encrypted ciphertext [8], [9].

In the OpenCL platform and execution model (figure 1),
the user creates a host (in our case, the CPU) program that
compiles and dispatches a GPGPU program to run on a par-
ticular device (the GPU). Upon executing the kernel, the user
must specify the number of work groups to execute as well as
the size of each work group. The execution model defines work
items to be an executing instance of an OpenCL kernel which
are run on processing elements, and work groups to be equally
sized groups of work items. The OpenCL runtime ensures that
work items within a work group will execute concurrently on
the same compute unit, but provides no guarantees whether
work items across work groups will execute concurrently or
serially. All work items within a group are assigned a local
id that is unique within that group as well as a global id
that is unique across all work items in all work groups of
the executing kernel. The work items then make use of their
local and global ids to appropriately divide up the work, and
can make use of synchronization constructs like a work group
barriers to synchronize their execution (but only for work items

within the same group) [10].

II. EVALUATION

An existing implementation of an OpenCL kernel imple-
menting the AES encryption algorithm was obtained from a
public source code repository [11]. The original implemen-
tation of the OpenCL encrypt kernel is implemented using
a data parallel programming model, whereby a program is
parallelized by performing the same computation on different
pieces of data [10]. In particular, it only makes use of the
global id of a work group to index itself into the input array
at a particular position (e.g. index 0 of the input array), with
one work group instance being responsible for encrypting an
entry of the input array. The kernel also makes use of the
vector instruction set of the GPU to increase the number of
bytes that a single ”entry” in the input array corresponds to.
In particular, in addition to traditional analogs to C data types
like uint (a 32-bit integer for a total of 4 bytes), there are
vector data types like uint4 (4 32-bit integers, for total of 16
bytes). Using these vector types allows one to execute native
vector operations for the target platform [10]. In particular, a
single work item can operate on 16 bytes at once, whereas a
traditional CPU would operate on 4 bytes at once. Thus, given
an input array of N bytes, we only need N/16 work groups
of 1 work item each to encrypt an input array. Hence, in this
implementation, the local id is ignored, since a work group
only consists of a single work item.

The target device used for conducting experiments was
a MotoX phone [12] (table I). We initially intended to use
the Nexus 4 phone, but this was abandoned due to apparent
instabilities triggered by the use of OpenCL on the device.

Preliminary experiments determined that the full paral-
lelism offered by the GPU was not being exploited using the
original implementation. Hence, modifications were made to
the original implementation in order to explore the different
levels of parallelism offered by varying the input parameters
to the kernel such as the number of work groups and the work
group size (which were previously strictly N/16 and 1 respec-
tively). The following sections describe the modifications that
were performed to the original implementation and investigates
their effect on the throughput of encryption.

1) Version 1 - even partitioning by work items: We modi-
fied the OpenCL AES encrypt kernel such that the input array
is split up evenly amongst the work items across all work
groups (whereas previously they only encrypted 16 bytes). In
particular, all OpenCL instances get some multiple of 16 bytes
on which to operate, all of which are equally sized except one
OpenCL instance which will be allocated whatever remains of
the input array (e.g. given N = 128 bytes, and 3 work items, 2
instances will operate on 48 bytes and 1 instance will operate
on 32 bytes).

Timing experiments were performed on a 128 MB input
array, with the total number of work groups being varied from
1 up to 16, and the work group size being kept at 1 (refer to
figure 2). Note that all timing measurements throughout this
report are restricted only to the encryption operation and do
not not include any input initialization operations.

Going from of 1 up to 4 work groups, we see a linear
speedup in encryption throughput (going from work groups of

 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Work Groups

OpenCL AES Encrypt - MotoX (128MB)

OpenCL - group size = 1

Fig. 2. OpenCL performance over a varying number of work groups

1 to 2 we see a 2.37 MB/second speedup, 2 to 3 we see 2.36
MB/second, and 3 to 4 we see 2.36 MB/second). These linear
speedups going from 1 up to 4 work groups are consistent
with the device specifications in table I which state that the
GPU has 4 computing units (hence, it is using an additional
computing unit for each additional work group).

When we reach 5 work groups, we see the worst decrease
in encryption throughput (3.54 MB/second). This is most
likely due to the OpenCL runtime scheduling 4 simultaneous
OpenCL kernel instances (4 work groups each consisting of a
single work item) that operate on 1/5 of the input array, with
a single OpenCL instance running on the remaining 1/5 only
after the first 4 complete (thereby underutilizing the parallelism
of the GPU).

The throughput degrades the most for numbers of work
groups that that are 1 modulo 4 since given that instances will
tend to complete in roughly the same time (since they have the
same data size and instructions executed), there will tend to
be a point at which only one GPU core will be utilized, thus
reducing parallelism (similarly for 2 modulo 4, and 3 modulo
4). As we increase the number of work groups, the degradation
is less since the point at which we aren’t maximally using
all 4 GPU cores operates over less of the input array. This
phenomenon has been described in [13] as the tail effect.

Hence, from figure 2, the main conclusion to be drawn is
that work groups are being scheduled on compute units, but
only one work group at a time is being scheduled (otherwise
the peaks would reach above 10 MB/second as the number of
work groups increases).

Next, we investigated the affect of increasing the number
of work items used on a single compute unit. In particular,
we began by querying the OpenCL runtime for the maximum
available work group size, which was found to be 256.
However, this is only a theoretical maximum, and the actual
maximum enforced by OpenCL is dependant on the kernel
being executed and its resource requirements [10]; in our
case, the maximum available was 80. Timing experiments were
performed on a 32 MB input array, with the total number of
work items being varied from 1 up to 80, and the number of
work groups being kept at 1 (refer to ”constant T-box, strided”
in figure 3).

From figure 3, we can see the encryption throughput
gradually increases from 0 up to 20 work items, doubling the
maximum throughput observed when only considering a single
work item (as in figure 2). However, after 20 work items, we
observe some degradation, followed by the throughput leveling
off at around 18 MB/second. This decrease in throughput for an

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Group size

OpenCL AES Encrypt - MotoX (32MB)

constant T-box, strided - work groups = 1
shared T-box, strided - work groups = 1
shared T-box, coalesced - work groups = 1

Fig. 3. OpenCL performance over varying work group size

increase in parallelism is an unexpected result and warranted
further investigation. Previous work has shown that memory
access patterns are important to consider when optimizing the
performance of a GPU program [14]. One important factor to
consider is whether accesses to global memory within a warp
[14] or team [10] (i.e. a hardware schedulable division of the
work group size) are coalesced. Memory accesses are said to
be coalesced within a team if each work item in the team
accesses global memory in an aligned, contiguous sequence
of 32, 64, or 128 bytes [15]. Hence, in the modification of
the implementation in section II-2, we investigate coalesced
memory accesses.

Another factor to consider is redundant access to global
memory. In particular, access to global memory is the slowest
memory operation, whereas access to local memory (shared
within a work group) is more efficient [10]. The current im-
plementation would not benefit from the use of local memory
for the input array since each work item reads global memory
addresses once and encrypts it independently. However, pre-
vious work has shown that loading the T-box into the local
memory of a compute unit is beneficial, since it is subject to
random access [16]. Thus, in section II-3, we explore adding
this optimization to the current algorithm.

2) Version 2 - coalesced accesses within work groups:
We further modified the kernel (from section II-1) such that
in addition to work items operating on equal sized input
chunks, the work items within a work group access contiguous
sequences.

That is, the kernel in section II-1 performed strided mem-
ory accesses [14] within a work group. For example, given
a single work group of size 2 where each work item is
responsible for encrypting E entries, accesses to the input array
A were as follows:

Work item 0 Work item 1

A[i] A[i + E]
A[i + 1] A[i + E + 1]

.

A[i + E − 1] A[i + 2 ∗ E − 1]

In the following implementation, the memory accesses
within such a work group have been modified such that instead
of concurrent memory accesses being E entries apart, they are
contiguous. That is, if we have a total of G work groups, the
accesses now look like:

 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Number of 16 Byte Entries Per Work Item

OpenCL AES Encrypt - MotoX (64MB)

strided access - group size = 80
coalesced access - group size = 80

Fig. 4. OpenCL performance for strided vs coalesced accesses within a work
group

Work item 0 Work item 1

A[i] A[i + 1]
A[i + E] A[i + 1 + E]

.

A[i + E ∗ (G − 1)] A[i + 1 + E ∗ (G − 1)]

Timing experiments were performed on a 64 MB input
array, with the total number of entries for a work item to
encrypt being varied from 1 (16 bytes) up to 5000 (78K). In
order to fully utilize all potential processing power, the work
group size was set to 80 and the number of work groups was
set such that all 4 compute units were used (refer to figure 4).

From figure 4, we generally achieve the best encryption
throughput for a small number of entries (< 500), and it tends
to get worse at the peaks for increasingly larger sizes per work
item. These drops in the peaks could be caused by increasingly
large stride distances within a work group.

The fluctuations observed in the graph are due to the
GPU being underutilized near the end of the computation. In
particular, in order to use a work group size of 80, the OpenCL
runtime forces the user to make each work group that size.
If the number of work items needed doesn’t evenly divide
the input, this will cause the final scheduled work groups to
underutilize the GPU (and it becomes increasingly bad if a
work item is responsible for a larger encryption size).

Comparing the coalesced and strided implementations, we
observe nearly identical throughput behaviour. However, we
get slightly less throughput for the coalesced implementation,
which is likely due to the increased operations being per-
formed for entry index calculations [10]. However, if memory
coalescing is in fact the reason for poor performance in the
strided implementation, then the coalesced graph indicates
that memory accesses are still not coalesced. Alternatively,
the memory access are already coalesced in the original
implementation (i.e. it may be the case that reading 16 bytes
from global memory at a time is the maximum), in which case
increasing the length of contiguous accesses will result in no
increase in throughput.

To rule out the possibility that any benefit from coalesced
memory access was not being realized due to interference
from not using the shared T-box optimization of section
II-3, we implemented both optimizations (see ”shared T-box,
coalesced” in figure 3). However, we again observed a constant
decrease in performance.

Hence, subsequent modifications did not build on the
coalesced optimization, and instead use the original implemen-
tation as described in section II-1.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Input size (MB)

Encryption Throughput - MotoX

OpenCL - work groups = 4, group size = 80
OpenSSL - 1 thread

Fig. 5. OpenCL GPU vs OpenSSL performance in AES encryption

3) Version 3 - storing the T-box in local memory: The
original implementation of the kernel stored the 4 KB T-box
in the constant memory region [11]. However, the constant
memory region is simply a read-only section of global memory.
The MotoX compute units were found to have a local memory
size of 8 KB, making this optimization possible. The kernel in
section II-1 was modified to have work items in a work group
evenly divide the task of copying the T-box into local memory
(synchronized via a local memory barrier) prior to performing
encryption. To measure the affects of this optimization, we
reran the timing experiments for investigating the affect of
increasing the number of work items used on a single compute
unit (section II-1, refer to ”shared T-box, strided” in figure 3).

From figure 3, we see an increased maximum throughput
(23.14 MB/second) over the previous implementation. Further,
we observe a less pronounced leveling off in throughput,
with the maximum throughput achieved at the maximum work
group size (80). Hence, this implementation was used in the
comparison against CPU performance.

4) GPU vs CPU Performance: Next, we evaluate the
performance of encryption of the GPU over the CPU using
the implementation in section II-3. Figure 2 was used to guide
the selection of an optimal number of work groups (4) and
figure 3 was used in choosing an optimal work group size
(80). The CPU implementation of AES encryption uses the
OpenSSL crypto library [17], using a 256-bit AES key and
the CBC encryption mode. As was done the GPU timing
measurements, the CPU timing measurements are restricted
only to the encryption operation. Timing experiments were
performed on input sizes varying from 16 bytes up to 512 MB
incrementing by powers of 2 (refer to figure 5).

From figure 5, we are able achieve a maximum throughput
of 93.07 MB/second at an input size of 16 MB, whereas the
CPU is able to achieve 51.87 MB/second at an input size of
8 MB (though it quickly degrades to 46.25 MB/second for
an input of 16 MB). Hence, the GPU’s increase in maximum
throughput speed is 46.82 MB/second over the CPU, with a
speedup of 1.79. While we have nearly doubled the CPU’s
performance, this margin is still small based on previously
published experiments investigating GPU encryption acceler-
ation on the desktop using CUDA, which have found up to a
28.39 fold speedup in encryption [18]. However, this may be
partly explained by the abundance of cores available on such
GPUs in comparison to mobile GPUs.

TABLE I. MOTOX DEVICE SPECIFICATIONS

Name Value

Manufacturer Qualcomm

Chipset Snapdragon S4 Pro MSM8960DT

CPU 2x Qualcomm Krait 300 Harvard Superscalar processor

GPU 400 MHz quad-core Adreno 320 MP4 GPU

GPU device memory 898 MB

Compute units 4

Max work group size 256

Constant buffer size 4096 bytes

Cache line size 16 bytes

Profiling timer resolution 1000 nanoseconds

Local memory size 8192 bytes

Max clock frequency 325 MHz

III. RELATED WORK

CleanOS is a modification of Android that introduces an
abstraction called Sensitive Data Objects (SDOs) to track
sensitive data in RAM, created and hoarded by apps that
run on top of the Dalvik VM [19]. The system works by
defining SDOs (either by the apps or by the default OS), which
are a logical collection of Java Objects that contain sensitive
data. It introduces a modified garbage collector known as
EvictIdleGarbageCollector (eiGC) which walks through an idle
SDO and encrypts their data-bearing fields using a key which
is then evicted to the cloud whereas the data remains encrypted
in memory. This system, like ours, prevents the download delay
of the encrypted data from a remote host as the data is always
present in the device itself. Moreover, the key is inaccessible
to a malicious user stealing the phone.

However, CleanOS incurs the latency of a network request
when retrieving the key from cloud. In particular, CleanOS
will incur unpredictable pauses in the application during an
otherwise inexpensive memory access on an encrypted value.
Due to the implementation of encryption at the Davlik VM
level, the application doesn’t have a means for knowing
when the pauses are going to happen, and hence cannot deal
with them by computing something else in the meantime, or
avoiding the request altogether. In fact, evaluations show that
many operations (like loading of an email onto the screen)
incurred overheads of more than 100% compared to a non-
CleanOS implementation, especially over 3G networks [19].

In contrast, our system intends to store the key on the
device in a special register accessed by the operating system
and not user-level applications. We can use techniques like
TRESOR [5] for this, which ensures that the key is only stored
in CPU registers which are not accessible to user applications
(like debug registers) and that the key is only brought into
RAM for a very short period on reboot even before all other
applications come to life. The key is cleared from RAM soon
after this. Another major shortcoming of CleanOS is that it
only encrypts data (memory) which is managed by the Dalvik
VM, and does not account for data that is unencrypted in
other parts of the operating system [19]. This includes OS
data buffers (e.g. for writing to a file, inside device drivers
from reading from sensors such as a camera).

XOM is a system to prevent software piracy, wherein the
executing code of the software which is in RAM is encrypted
by marking it as ”execute-only” and so is prevented from
tampering [20]. Cryptkeeper is a software-encrypted virtual
memory manager that segments RAM into two segments, one
for running the decrypted program instructions (small in size)

and the other for keeping the encrypted pages. The pages are
swapped automatically between the segments and decrypted on
demand [21]. Encrypted Swap aims at encrypting pages before
swapping them to swap memory so that sensitive data related
to swapped out processes are not available in backing storages
[22]. These systems all have the same disadvantage that, even
though the data is encrypted, the decryption key is still left
in RAM and so can be recovered through memory-harvesting
techniques.

IV. CONCLUSION

In this report, we have taken the first steps in investigating
the feasibility of using the GPU as a cryptographic accelerator
for the AES algorithm on mobile devices. In particular, our
focus was on exploring the use of OpenCL as a framework for
implementing the algorithm. Using modifications of an existing
implementation [11], we first showed that OpenCL schedules
work groups to execute exclusively on the compute units of the
GPU, and that optimal throughput must be achieved through
more than just a simple data parallel implementation. Next, we
investigated how performance varied with the implementation
as the number of active work items in a single compute unit
was varied, discovering a surprising level off in encryption
throughput when using only 1/4 of the available work items.
Next we investigated two potential reasons for lower than
expected performance: strided access to input data within work
groups, and redundant random accesses to the T-box lookup
table that could be avoided using local memory. We discovered
the T-box lookup table optimization provided the best increase
in throughput, whereas the coalesced access implementation
only added to the runtime. Finally, we determined that using
optimal parameters for the number of work groups and work
group size, we were able to achieve a 1.79 fold speedup in
maximum throughput over a single CPU using the OpenSSL
implementation.

V. FUTURE WORK

Our next endeavour would be to evaluate other char-
acteristics of the GPU implementation of AES relevant to
mobile devices, such as energy consumption during encryption.
Finally, we would investigate methods for securely providing
a privileged user-level process the permissions and capabilities
needed to encrypt memory on behalf of the Linux kernel.

REFERENCES

[1] A. K. Ghosh and T. M. Swaminatha, “Software security and privacy
risks in mobile e-commerce,” Communications of the ACM, vol. 44,
no. 2, pp. 51–57, 2001.

[2] “Ponemon Institute - The lost smartphone problem,” http://www.mcafee.
com/us/resources/reports/rp-ponemon-lost-smartphone-problem.pdf,
accessed: 2013-12-04.

[3] J. Lessard and G. Kessler, “Android forensics: Simplifying cell phone
examinations.” 2010.

[4] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: cold-boot attacks on encryption keys,” Communications of

the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[5] T. Müller, F. C. Freiling, and A. Dewald, “TRESOR runs encryption
securely outside RAM,” in USENIX Security Symposium, 2011.

http://www.mcafee.com/us/resources/reports/rp-ponemon-lost-smartphone-problem.pdf
http://www.mcafee.com/us/resources/reports/rp-ponemon-lost-smartphone-problem.pdf

[6] K. Kothapalli, D. S. Banerjee, P. Narayanan, S. Sood, A. K. Bahl,
S. Sharma, S. Lad, K. K. Singh, K. Matam, S. Bharadwaj et al.,
“CPU and/or GPU: revisiting the GPU vs. CPU myth,” arXiv preprint

arXiv:1303.2171, 2013.

[7] C.-L. Duta, G. Michiu, S. Stoica, and L. Gheorghe, “Accelerating
encryption algorithms using parallelism,” in Control Systems and Com-

puter Science (CSCS), 2013 19th International Conference on. IEEE,
2013, pp. 549–554.

[8] P. FIPS, “197, Advanced encryption standard (AES),” National Institute

of Standards and Technology, 2001.

[9] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced

encryption standard. Springer, 2002.

[10] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL

programming guide. Pearson Education, 2011.

[11] “GitHub - softboysxp/OpenCL-AES,” https://github.com/softboysxp/
OpenCL-AES, accessed: 2013-12-04.

[12] “PDAdb.net - Qualcomm Snapdragon S4 Pro MSM8960DT multi-core
application processor with Modem Datasheet,” http://www.pdadb.net/
index.php?m=cpu&id=a8960dt&c=qualcomm snapdragon s4 pro
msm8960dt, accessed: 2013-12-04.

[13] “NVIDIA GPU performance analysis and optimization,”
http://on-demand.gputechconf.com/gtc/2012/presentations/
S0514-GTC2012-GPU-Performance-Analysis.pdf, accessed: 2013-12-
04.

[14] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler for
memory optimization and parallelism management,” in ACM Sigplan

Notices, vol. 45, no. 6. ACM, 2010, pp. 86–97.

[15] “NVIDIA - OpenCL programming guide for the CUDA archi-
tecture,” http://www.nvidia.com/content/cudazone/download/OpenCL/
NVIDIA OpenCL ProgrammingGuide.pdf, accessed: 2013-12-04.

[16] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implementation and
analysis of aes encryption on gpu,” in High Performance Computing

and Communication & 2012 IEEE 9th International Conference on

Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th

International Conference on. IEEE, 2012, pp. 843–848.

[17] “OpenSSL - documents, crypto(3),” http://www.openssl.org/docs/
crypto/crypto.html, accessed: 2013-12-04.

[18] K. Iwai, T. Kurokawa, and N. Nisikawa, “AES encryption implemen-
tation on CUDA GPU and its analysis,” in Networking and Computing

(ICNC), 2010 First International Conference on. IEEE, 2010, pp.
209–214.

[19] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “CleanOS: limiting mobile data exposure with idle eviction,”
in Proceedings of the USENIX Conference on Operating Systems Design

and Implementation, Berkeley, CA, USA, 2012.

[20] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[21] P. A. Peterson, “Cryptkeeper: improving security with encrypted ram,”
in Technologies for Homeland Security (HST), 2010 IEEE International

Conference on. IEEE, 2010, pp. 120–126.

[22] N. Provos, “Encrypting virtual memory,” in Proceedings of the Ninth

USENIX Security Symposium, 2000, pp. 35–44.

https://github.com/softboysxp/OpenCL-AES
https://github.com/softboysxp/OpenCL-AES
http://www.pdadb.net/index.php?m=cpu&id=a8960dt&c=qualcomm_snapdragon_s4_pro_msm8960dt
http://www.pdadb.net/index.php?m=cpu&id=a8960dt&c=qualcomm_snapdragon_s4_pro_msm8960dt
http://www.pdadb.net/index.php?m=cpu&id=a8960dt&c=qualcomm_snapdragon_s4_pro_msm8960dt
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/crypto.html

	Introduction
	Evaluation
	Version 1 - even partitioning by work items
	Version 2 - coalesced accesses within work groups
	Version 3 - storing the T-box in local memory
	GPU vs CPU Performance

	Related work
	Conclusion
	Future work
	References

